CuE

Making the Top 25 List

25 CWHY)4 pimmficials4d T ppdotssdnand dopndicast = pgidaieks

Robert A. Martin

MITRE

Goal of the Common Weakness
) Enumeration Initiative
o To Improve the quality of software with respect to

known security issues within architecture, design,
code or implementation. By:

- enabling more effective discussion and
description of these weaknesses

- defining a unified measurable set of these
weaknesses

- supporting the selection and use of
software security tools and services to find
these weaknesses

© 2009 MITRE

Vulnerability Type Trends:
A Look at the CVE List (2001 - 2007)

25.00% 1
XSS

- buf

20.00% - ______,.//\ ZqolthECt
-~ php-include
infoleak
15.00% - ——dos-malform
link
\ C format-string
\\ >< crypt
10.00% - .
priv
perm

metachar
5.00% - — | int-overflow
' |

| /’J" | =~ = e
0.00% i | | | \) —e

2001 2002 2003 2004 2005 2006 2007 MITRE

Removing and Preventing the Vulnerabilities
Requires More Specific Definitions...CWEs

Failure to Sanitize Directives in a Web Page (aka 'Cross-site scripting' (XSS)) (79)
* Failure to Sanitize Script-Related HTML Tags in a Web Page (Basic XSS) (80)
* Failure to Sanitize Directives in an Error Message Web Page (81)
* Failure to Sanitize Script in Attributes of IMG Tags in a Web Page (82)
* Failure to Sanitize Script in Attributes in a Web Page (83)
* Failure to Resolve Encoded URI Schemes in a Web Page (84)
XSS * Doubled Character XSS Manipulations (85)
* Invalid Characters in Identifiers (86)

 Alternate XSS syntax (87)

—= buf
Sql - | nj ect Failure to Constrain Operations within the Bounds of an Allocated Memory Buffer (119)
* Unbounded Transfer (‘Classic Buffer Overflow’) (120)
d Ot » Write-what-where Condition (123)
» Boundary Beginning Violation ('Buffer Underwrite') (124)
£ Out-of-bounds Read (125
= p h p all Cl u d e * Wrap-around Error (1(28))
. * Unchecked Array Indexing (129)
|nf0|ea k * Incorrect Calculation of Buffer Size (131)
» Miscalculated Null Termination (132)
e d Os-MmMa Ifﬂ 'm * Return of Pointer Value Outside of Expected Range (466)

link
Path Traversal (22)
fD 'rma t-—str‘i n g * Relative Path Traversal (23)

+ Path Traversal: ‘\..\filename' (29)

+ Path Traversal: "\dir\..\filename' (30)
CFV pt » Path Traversal: 'dir\..\filename' (31)
. » Path Traversal: '..." (Triple Dot) (32)
Der » Path Traversal: "...." (Multiple Dot) (33)
» Path Traversal: "..../[' (34)
DE rm + Path Traversal: '.../.../I' (35)
 Absolute Path Traversal (36)
m eta Ch ar » Path Traversal: '/absolute/pathname/here’ (37)

» Path Traversal: \absolute\pathname\here’ (38)
» Path Traversal: 'C:dirname’ (39)
» Path Traversal: \UNC\share\name\' (Windows UNC Share) (40)

int-overflow

Protection

Analysis PLOVER

Micrqsft

i o

HJ.!“ Y Lol |

-

——

=]
= ———

To— ha=sSas

il

!
%

WA 0

i

-

IR

|

WA o

W
|

© 2009 MITRE

:

Buimw A Previously Published

Vulnerability

B\

G
Enumeration &= =,
t cve.mitre.org Gary
McGraw’s
GMU ford Cg/E-based ; e e
Stanfor PLOVER Wor
IBM gg| VERACODE Taxonomy
NSA/CTC UC Berkeley Purdue Fortify’s
IMU Coverity SPI Dynamics CE:;:;S
Core Security Kestrel Technolo
Parasoft 9 Work and
MITLL Watchfire Taxonomy
Unisys Security Institute Qracle
Cenzic KDM Analytics

UMD

Klocwork’s
Checklist
and
Taxonomy

\\}.\\‘-\N\'Q 3

Making
Security
Measurable™

= © 2009 MITRE

Using A Unilateral NDA with MITRE to Bring in Info

Purpose:

e Sharing the proprietary/company confidential information contained in the
underlying Knowledge Repository of the Knowledge Owner’s Capability for the
sole purpose of establishing a public Common Weakness Enumeration (CWE)
dictionary that can be used by vendors, customers, and researchers to
describe software, design, and architecture related weaknesses that have
security ramifications.

o The individual contributions from numerous organizations, based on their
proprietary/company-confidential information, will be combined into a
consolidated collection of weakness descriptions and definitions with the
resultant collection being shared publicly.

o The consolidated collection of knowledge about weaknesses in software,
design, and architecture will make no reference to the source of the
information used to describe, define, and explain the individual weaknesses.

@secormvmvonarion 151 PARASOFT .. VERACODE @ watcHfi IRe App-

I(Io(=wor|(yg PALAMIDA GRAMMATECH 7 J
o CENZIC con= FD FRT TIFY Q l a0
O oroServices VSofCheck "Coverity SLIE[O0IC OUNCE

Current Community Contributing to the
Common Weakness Enumeration

AppSIC
Apple
Cenzic
Ounce Labs
_ Palamida
Core Security Parasoft
Coverity
proServices Corporation
Fortify

Gramma Tech Securitylnnovation

Interoperability Clearing House SofCheck
ST SPI Dynamics
Surelogic, Inc.
KDM Analytics
Klocwork VERACODE
Watchfire
Making
Security

Measurable®

To join send e-mail to cwe@mitre.org ©2009 MITRE

PLOVER

(CWE draft

o) o

L e

BT ALL

ﬂﬁjjﬂﬂﬂﬂé“ I AL LIIiII[lIJII|1||||ll|Hi‘|IL b

i

o
|

=

e

B O T

I

CITTA L A4 Iy TN |_. 1\ —

=
———
_—
==
-
==
—_—
e
=
=
mEEs_E
e
—
——
]

1)

I

i}

_
W o+

i

b |

WG . Mg
i | WlﬂlmﬂﬁgﬂWWﬂké

CWE
draft 5

|

4

]

o0

]

L

-
i1t
il

+.
£
i
i

|

—
'gil o1
ﬁm@' |H-|im

i

[
il —

ﬂm{»]l |

i

TR

mmqumﬁ4|u1;

i
B

g

filli_+

.....

-
|spreas

»

CWE |
draft 7 +

i
i
—
i
\
\

CWE @ _
Vers 1.0 |
|

—=R=

)

==
=}
=]
=%

1
[

A R
wﬂi]i]

i

Ml
A | 1

P 1L

i

,HT _
F iR
if AR
i |

il
ﬂ

e

TRTTATTRA) |

AR 1
|

|1

|
i

+-
i
I
j

b 1
(G 0 SRt
ﬂmﬁh i1l
? i

2005
300 nodes

2006
599 nodes

2007
634 nodes

2008
673 nodes

Mar2009
762nodes

CWE Compatibility & Effectiveness Program
(launched Feb 2007)

800 CWE - CWE Compatibility
4 B @ f__fhttp:che.rn'ltre.org!compatible!index.html @ 2(Q- Google

[I1 AFC Home MIl Home Search¥ Map/Ph/Weather/Travelv EBob's Bookma

WE Common Weakness Enumeration
" A community-developed dictionary of common software weaknesses

rks ¥ CVEnOVAL¥ OVAL shared SPAMmngtv LogoutofSPAMmngt

CWE Compatibility Section Contents
Full Dictionary View Compatibility
Classification Tree Program
Other Views The CWE Compatibility and Effectiveness Program provides for a product or service to be Requiremen ts
reviewed and registered as officially "CWE-Compatible" and "CWE-Effective,” thereby Make a Declaration

assisting organizations in their selection and evaluation of tools and/or services for
assessing their acquired software for known types of weaknesses and flaws, for learning

technologies = SECURITY DATABASE VERACODE FORTIFY

D
Secure Your Web Code w -
0 CENZIC @ GRAMMATECH Klocwork SklllBrgie

IPA SofCheck . ZEFE R Cﬂ@

. cigital
@ WatCHIIRe heckm X " cigita OUNCE |ARS SRS

INFORMATION TECHNOLOGY PROMOTION AGENCY, JAPAN

| CWE Coverage — the CWE identifiers that the capability is effective at locating in |

Organizations Participating

cwe.mitre.org/compatible/ |

All organizations participating in the CWE

Compatibility and Effectiveness Program are TOTALS
listed below, including those with CWE- Organizations Participating: 18 Peeates: vecember 20, 2006
Compatible Products and Services and those Products & Services: 32 ‘

with Declarations to Be CWE-Compatible.

' ¥ |

Products are listed alphabetically by organization name:
©2009 MITRE

- & & The Security Development Lifecycle : MSO8-078 and the SDL :
[-~ -] [<] [-+] @2 hutp:/ /blogs.msdn.com/sdlfarchive/2008/12/18/ms08-078-and-the-sdl.aspx GES © Q- Google

Weicome to MSDN Blogs Sign in | Join | Help

I s

The Security
Development Lifecycle

MSO08-078 and the SDL »aaa*

s Hi, Michael here.

Every bug is an opportunity to learn, and the security update that fixed the data binding bug that affected
Internet Explorer users is no exception.

? The Common Vulnerabilities and Exposures (CVE) entry for this bug is CVE-2008-4844.

Before I get started, I want to explain the goals of the SDL and the security work here at Microsoft. The SDL is
designed as a multi-layered process to help systemically reduce security vulnerabilities; if one component of
the SDL process fails to prevent or catch a bug, then some other component should prevent or catch the bug.
Crawl Walk Run The SDL also mandates the use of security defenses whose impact will be reflected in the "mitigations"
section of a security bulletin, because we know that no software development process will catch all security
SDL L Net K bugs. As we have said many times, the goal of the SDL is to "Reduce vulnerabilities, and reduce the severity
of what's missed."

In this post, I want to focus on the SDL-required code analysis, code review, fuzzing and compiler and
operating system defenses and how they fared.

threat modeling

News Background
The bug was an invalid pointer dereference in MSHTML.DLL when the code handles data binding. It's
Blogroll important to point out that there is no heap corruption and there is no heap-based buffer overrun!

When data binding is used, IE creates an object which contains an array of data binding objects. In the code
in guestion, when a data binding object is released, the array length is not correctly updated leading to a
function call into freed memory.

The vulnerable code looks a little like this (by the way, the real array name is _aryPXfer, but I figured
ArrayOfObjectsFromlE is a little more descriptive for people not in the Internet Explorer team.)

int MaxIdx = ArrayOfObjectsFromIE.Size()-1;
for (int i=0; i <= MaxIdx; i++) {
if (!ArrayOfObjectsFromIE([i])

continue;

ArrayOfObjectsFromlIE([i]->TransferFromSource();

}

Here's how the vulnerability manifests itself: if there are two data transfers with the same identifier (so
MaxIdx is 2), and the first transfer updates the length of the ArrayOfObjectsFromIE array when its work was
done and releases its data binding object, the loop count would still be whatever Maxlidx was at the start of

the loop, 2.

This isja time-of-check-time-of-use (TOCTOU) bug that led to code calling into a freed memory block. The
M osoft Security Do TTent Commpn Weakness Enumeration (CWE) classification for this vulnerability is CWE-367.

Soc) ' o /mx was to check the maximum iteration count on each loop iteration rather than once before the loop

stacte. thic ic tlo et fic £ alOoC IOl s the chack oo ol e mceoiblo to tho oot e o

a time-of-check-time-of-use (TOCTOU) bug that led to code calling into a freed memory block. The
on Weakness Enumeration {CWE) classification for this vulnerability is CWE-367.
TOC TOU ISS0es. We Wil Update SUr training 1o sgdress this.

2 Our static analysis tools don't find this because the tools would need to understand the re-entrant nature of
the code.

Fuzz Testing

2009 SANS/CWE Top 25 Programming Errors
(released 12 Jan 2009)

Making
Security
Measurable™

cwe.mitre.org/top25/

806

why SANS?

The right security training for your staff, at the right time, in the right place.

training certification resources

pick a course

SANS Institute - CWE/SANS TOP 25 Most Dangerous Programming Errors

vendor

why certify?

portal

register now

-

storm center about

college

developer

806

CWE - 2009 CWE/SANS Top 25 Most Dangerous Programming Errors

CWE/SANS TOP 25 Most |

Experts Announce Agreement on th
And How to Fix Them
Agreement Will Change How Organ|
Project Manager: Bob Martin, MITRE

Qv

Common Weakness Enumeration

A Community-Developed Dictionary of Software Weakness Types

Questions: top25@sans.org
- PDF For Printing

(January 12, 2009) Today in Washington, DC, ex
organizations jointly released the consensus Lis|
security bugs and that enable cyber espionage
well understood by programmers; their avoidary
their presence is frequently not tested by orgd

The impact of these errors is far reaching. Just]
breaches during 2008 - and those breaches cas{
sites, turning their computers into zombies.

People and organizations that provided substan
the most respected security experts and they
Microsoft, to DHS's National Cyber Security Divig
the Japanese IPA, to the University of Californif
Institute managed the Top 25 Errors initiative,
Security Agency and financial support for MITRY
Homeland Security's National Cyber Security Di)
National Cybersecurity Division at DHS have con
improve the security of software purchased by

What was remarkable about the process was hg
heated discussion. "There appears to be broad
Mason Brown, "Now it is time to fix them. First
write code that is free of the Top 25 errors, an
processes in place to find, fix, or avoid these pi
free of these errors as automated tools can ver|

Tho Of £ ebo D £ 01 Llosalli

M

Full Dictionary View
Development View
Research View
Reports

Sources
Process
Documents

Related Activities
Discussion List
Research
CWE/SANS Top 25
CWss

Calendar
Free Newsletter

Program
Requirements
Declarations

Make a Declaration

Search the Site

Section Contents

CWE/SANS Top 25
Supporting Quotes
Contributors

2009 CWE/SANS Top 25 Most Dangerous
Programming Errors

On the Cusp

Top 25 FAQ
Document version: 1.0 (pdf) Date: January 12, 2009 Top 25 Process

Change Log

Document Editor:
Steve Christey (MITRE)

Project Coordinators:
Bob Martin (MITRE)
Mason Brown (SANS)

://cwe e /
Alan Paller (SANS) http://cwe.mitre.org/top25

Introduction

The 2009 CWE/SANS Top 25 Most Dangerous Programming Errors is a list of the most significant
programming errors that can lead to serious software vulnerabilities. They occur frequently, are often
easy to find, and easy to exploit. They are dangerous because they will frequently allow attackers to
completely take over the software, steal data, or prevent the software from working at all.

The list is the result of collaboration between the SANS Institute, MITRE, and many top software
security experts in the US and Europe. It leverages experiences in the development of the SANS Top 20
attack vectors (http://www.sans.org/top20/) and MITRE's Common Weakness Enumeration (CWE)
(http://cwe.mitre.org/). MITRE maintains the CWE web site, with the support of the US Department of
Homeland Security's National Cyber Security Division, presenting detailed descriptions of the top 25
programming errors along with authoritative guidance for mitigating and avoiding them. The CWE site
also contains data on more than 700 additional programming errors, design errors, and architecture
errors that can lead to exploitable vulnerabilities.

The main goal for the Top 25 list is to stop vulnerabilities at the source by educating programmers on
how to eliminate all-too-common mistakes before software is even shipped. The list will be a tool for
education and awareness that will help programmers to prevent the kinds of vulnerabilities that plague
the software industry. Software consumers could use the same list to help them to ask for more secure
software. Finally, software managers and CIOs can use the Top 25 list as a measuring stick of progress
in their efforts to secure their software.

N <>

CWE/SANS Top 25 Programming Errors

e Sponsored by:
- National Cyber Security Division (DHS)
- Information Assurance Division (NSA)

o List was selected by a group of security
experts from 35 organizations including:

- Academia: Purdue, Univ. of Cal., N. Kentucky Univ.

- Government: CERT, NSA, DHS

- Software Vendors: Microsoft, Oracle, Red Hat, Apple
- Security Vendors: Veracode, Fortify, Cigital, Symantec

© 2009 MITRE

Credited Contributors

The following people or organizations are being publicly
acknowledged because they provided us with substantive
comments on the drafts. This public document is markedly
improved thanks to their expert feedback.

Additionally, without the advice and collaboration from Alan
Paller and Mason Brown from the SANS Institute, this effort
would not be what it has become. Finally, CWE Team
members Conor Harris and Janis Kenderdine deserve our
endless thanks for their tireless and timely help in updating
the CWE items and getting this material into a usable form
on the web site.

Robert A. Martin & Steve Christey

© 2009 MITRE

Rabert C. Seacord
Pascal Meunier
Matt Bishap
Kenneth van Wyk
Masato Terada
Sean Barnum

Mahesh Saptarshi

Cassio Goldschmidt

Adam Hahn

Jeff Williams
Carsten Elram
Josh Drake
Chuck Willis
Michael Howard
Bruce Lowenthal
Mark J. Cox
Jacob West
Djenana Campara
James Walden
Frank Kim

Chris Eng

Chris Wysopal

CERT

CERIAS, Purdue University
University of California, Davis
KRVW Assoclates

Information-Technology Promotion Agency (IPA) (J2pan)

Clgital, Inc.

Symantec Corporation
Symantec Corporation
MITRE

Aspect Security and OWASP

Secunia

iDefense Labs at VeriSign, Inc.

MANDIANT

Microsaft

Oracle Corporation

Red Hat Inc.

Fortify Software

Hatha Systems

Northern Kentucky University
ThinkSec

Veracode, Inc.

Veracode, Inc.

Ryan Barnett
Antonio Fontes
Mark Fioravanti II
Ketan Vyas
Lindsey Cheng
lan Peters

Tom Burgess
Hardik Parekh
Matthew Coles
Mouse

Ivan Ristic

Apple Product Security

Breach Security

New Access SA (Switzerland)

Missing Link Security Inc.

Tata Consultancy Services (TCS)

Secured Sciences Group, LLC

Secured Sciences Group, LLC

Secured Sciences Group, LLC

RSA = Security Division of EMC Corporation
RSA - Security Division of EMC Corporation

Software Assurance Forum for Excellence in Code (SAFECode)

Core Security Technologies Inc.

Depository Trust & Clearing Corporation (DTCC)

The working group at the first OWASP ESAPI Summit

National Security Agency (NSA) Information Assurance Division
Department of Homeland Security (DHS) National Cyber Security Division

© 2009 MITRE

Main Goals

o Raise awareness for developers
o Help universities to teach secure coding

o Empower customers who want to ask for
more secure software

o Provide a starting point for in-house
software shops to measure their own
progress

© 2009 MITRE

People are Starved for Simplicity

GOUS[@ Analytics ramartin@mitre.org | Settings | My Account|Help|Sign Out
Analytics Settings | View Reports: R ror My Analytics Accounts: TITXT
u Dashboard Expot + | = Email Beta Advanced Segments: All Visits »
 Saved Reports
AV Dashboard Jul 27, 2008 - Feb 27, 2009
% Traffic Sources 172,151/day 200-3 000/0
= -3, a
] Content + Vishs y
1nm m!
- Goals
100-300/day
T)
Custom
B

RepomngBeta TN st Seeneldl Sebmel 0 O Qw20 Moenef62 Dembed8 Dembe?l A0 oy 0B Fevary) 88

© 2009 MITRE

Who Did We Reach and Where?

News: USA Today, Forbes, BBC
Trade Magazines

Blogs, tweets, bookmarks
Podcasts

Developers

Friends, Romans, Countrymen

© 2009 MITRE

Some Reactions (Paraphrased)

o Blog title: “NSA flames NOObs”

e ‘I never heard of any of these. Thanks!”

e ‘I have a feeling I'll be busy this weekend.”

e “You forgot #1: managers force us to meet deadlines.’
e "My boss asked what | thought about this.”

e “It's convenient to have these all in one place”

e “This complicates my job as a consultant”

e “This one is easy to fix.” “No it's not!” “Oh, yeah.”

e “These are all just (web problems|injection|bugs)”

e [in vendor forum]
— Customer: “How have you protected against these?”
- Vendor: <silence>

)

© 2009 MITRE

Prevalence based on 2008 CVE data

v
&

Plus Info froqp\/arious
ConsultamtéRegarding
“Internally®eveloped Code”

\éC)

secaty” ® 4855 total flaws tracked by CVE in 2008

Fear the Rest:
The Top 25 compared to all CWE

==

© 2009 MITRE

B (OWE - 2009 COWE/SANS Top 25 Most Dangerous Programming Errors B

Insecure Interaction Between Components [

These weaknesses are related to insecure ways in which data is sent and received between separate components, modules,
programs, processes, threads, or systems.

o CWE-20: Improper Input Validation
o CWE-116: Improper Encoding or Escaping of Output
o CWE-89: Failure to Preserve SQL Query Structure (aka 'SQL Injection”)
+ CWE-79: Failure to Preserve Web Page Structure (aka 'Cross-site Scripting”)
E-78: Failure to Preserve OS Command Structure (aka 'OS Command Injection')
o CWE-319: Cleartext Transmission of Sensitive Information
E-352: Cross-Site Request Forgery (CSRF)
E-362: Race Condition
o CWE-209: Error Message Information Leak

Risky Resource Management

The weaknesses in this category are related to ways in which software does not properly manage the creation, usage,
transfer, or destruction of important system resources.

o CWE-119: Failure to Constrain Operations within the Bounds of a Memory Buffer
o CWE-642: External Control of Critical State Data

o CWE-73: External Control of File Name or Path

o CWE-426: Untrusted Search Path

o CWE-94: Failure to Control Generation of Code (aka 'Code Injection')

o CWE-494: Download of Code Without Integrity Check

o CWE-404: Improper Resource Shutdown or Release

o CWE-665: Improper Initialization

o CWE-682: Incomrect Calculation

Porous Defenses
The weaknesses in this category are related to defensive techniques that are often misused, abused, or just plain ignored.

E-285: Improper Access Control (Authorization)
E-327: Use of a Broken or Risky Cryptographic Algorithm
E-259: Hard-Coded Password
E-732: Insecure Permission Assignment for Critical Resource
o CWE-330: Use of Insufficiently Random Values
o CWE-250: Execution with Unnecessary Privileges >
o CWE-602: Client-Side Enforcement of Server-Side Security 35
 There was 0% envor cpesng the page. For more mrorTation. choose AQivy om The Wincow mena =

Background Details to Check Out

e Contributors cwe.mitre.org/top25
e Process description
o Changelog for each revision

e On the Cusp — weaknesses that almost
made it

e Appendices
— Selection Criteria and Supporting Fields

-~ Threat Model for the Skilled, Determined
Attacker

© 2009 MITRE

2009 CWE/SANS Top 25 - Final Draft Changes and Discussion

Changes in Final Week

Date: January 11, 2009

L

L I

Improved readability and understandability of discussion text

Added remainder of suggested mitigations to CWE entries

Made significant updates to CWE entries on the Top 25, focusing on demonstrative examples,
mitigations, consequences, references, and extended descriptions.

Finished additions to the "On the Cusp” list of CWEs that did not make it to the Top 25
Created a CWE Top 25 view (CWE-750) and generated supporting PDF graphs for visualization
Collected final supporting quotes

Wrote process document

Finalized contributor list

Reorganized main document

Summary of Received Comments for Draft 3

Date: January 8, 2009

-

-

We again received many comments from about a dozen people, so we cannot individually
respond to them all. Each draft has had approximately 5 to 8 new reviewers.

Many of the comments were related to specific mitigations for individual entries. The CWE
entries are being updated to reflect these changes.

Some people provided substantive commentary on the threat model, which was a new addition.
Much of the feedback centered around apparent contradictions and other issues with the
description. As a result, this was cleaned up a bit in this final draft.

Many contributors made final requests for entries that they thought were important for
inclusion. In some cases, there were conflicting recommendations from different people,
especially with respect to prevalence. The same entry would be seen extensively by one person
but much less frequently by another person. This made the final decisions more difficult. A
separate "On the Cusp” document will be published that will cover the issues that did not make
it to the final list.

Top 25 and OWASP Top 10

|E Causal (Chain) *=*% Exact Match
|j Indirect Relationship |~ | Abstraction Relationship

also see: http://securityninja.co.uk/blog/?p=132

11689 79 |78 319
C
c |~

352

259732 330

682 285 |327

250 (602

362 209 119 (642 | 73 |426 | 94 |494 404 665
AL XSS c
AZ: Injection

A3: Malicious File
Execution

Ad: Diirect Object
Reference

As: CSRF c

A6 Information

Lealcs ! Error -
Handling

A7 Authentication

! Session C A C C
Management
AR
Crvptographic C
Storage

AQ-
C ommumications

A10: URL . ‘ c ‘ c ‘,,
Restriction

| o Jo]ol8]

cefereiele

http://securityninja.co.uk/blog/?p=132

Frequently Asked Questions (FAQ)

How is this different from the OWASP Top Ten?
The short answer is that the OVWASP Top Ten covers more general concepts and is focused on web applications.
The CWE Top 25 covers a broader range of issues than what arise from the web-centric view of the OWASP
Top Ten, such as buffer overflows. Also, one goal of the CWE Top 25 is to be at a level that is directly
actionable to programmers, so it contains more detailed issues than the categories being used in the Top Temn.
There is some overlap, however, since web applications are so prevalent, and some issues in the Top Ten hawve
general applications to all classes of software.

How are the weaknesses prioritized on the list?
With the exception of Input Validation being listed as number 1 (partially for educational purposes), there is no
concrete prioritization. Prioritization differs widely depending on the audience (e.g. web application developers
versus 0S5 developers) and the risk tolerance (whether code execution, data theft, or denial of service are more
important}. It was also believed that the use of categories would help the organization of the document, and
prioritization would impose a different ordering.

Why are you including overlapping concepts like input validation and XSS, or
incorrect calculation and buffer overflows? Why do you have mixed levels of

abstraction?
While it would hawve been ideal to have a fixed level of abstraction and no overlap between weaknesses, there
are several reasons why this was not achieved.

Contributors sometimes suggested different CWE identifiers that were closely related. In some cases, this
difference was addressed by using a more abstract CWE identifier that covered the relevant cases.

In other situations, there was strong advocacy for including lower-level issues such as SQL injection and cross-
site scripting, so these were added. The general trend, however, was to use more abstract weakness types.

While it might be desired to minimize overlap in the Top 25, many vulnerabilities actually deal with the
interaction of 2 or more weaknesses, For example, external control of user state data (CWE-642) could be an
important weakness that enables cross-site scriptimg (CWE-79) and SQL injection {(CWE-89). To eliminate
overlap in the Top 25 would lose some of this important subtlety.

Finally, it was a conscious decision that if there was enough prevalence and severity, design-related
weaknesses would be included. These are often thought of as being more abstract than weaknesses that arise
during implementation.

The Top 25 list tries to strike a delicate balance between usability and relevance, and we believe that it does
so, even Wwith this apparent imperfection.

Why don’'t you use hard statistics to back up your claims?
The appropriate statistics simply aren't publicly available. The publicly available statistics are either too high-
level or not comprehensive enough. And none of them are comprehensive across all software types and
environments,

Fear #26... both of ‘em

e Resource Exhaustion
- Not prevalent enough

- Not severe enough
- Based on T25’s threat model ... as far as

 Unchecked Return Value we know

— Not prevalent enough
- Rarely severe enough

o What's your #267

© 2009 MITRE

On the Cusp: Other Weaknesses to Consider

Table of Contents

1. Introduction
2. Weaknesses that did not have sufficient prevalence or severity
3. Weaknesses covered by more general entries

Introduction

The CWE/SANS Top 25 is really just a starting point for developers. Many weaknesses were
considered for inclusion on the Top 25, but some did not make it to the final list. Some were not
considered to be severe enough; others were not considered to be prevalent enough.
Sometimes, the Top 25 reviewers themselves had mixed opinions on whether a weakness should
be added to the list or not.

With respect to severity, some Top 25 users may have a significantly different threat model. For
example, software uptime may be critical to consumers who operate in critical infrastructure or
e-commerce envirocnments. However, in the threat model being used by the Top 25, availability
is regarded as slightly less important than integrity and confidentiality.

With respect to prevalence, some Top 25 items may not be applicable to the class of software
being developed. For example, cross-site scripting is specific to the Web, although analogs exist
in other technologies. In other cases, developers may have already eliminated much of the Top
25 in past efforts, so they want to look for other weaknesses that may still be present in their
software.

Some on-the-cusp items were omitted because they are already indirectly covered on the Top
25, usually by a more general entry. However, these would be important to consider as
individual items.

For these reasons, users of the Top 25 should sericusly consider including these weaknesses in
their analyses.

Weaknesses that did not have sufficient prevalence or severity

BusinessWeek

HOME INVESTING COMPANIES puss Ui 8 [INNOVATION MANAGING SMALLBIZ B-SCHOOLS AS

Tech Home CEO Tech Guide Computers Electronics Entertainment Internet Reviews Software Investing 3

The Tech Beat :

NSA, DHS, Industry Gang Up on Dangerous
Software Errors

Posted by: Stephen Wildstrom on January 12

Computer security experts have warned for years that the endless cycle of software flaws and
exploits will only be broken when we create incentives for software authors and publishers to
get it right. On Jan. 12, the industry took a potentially important step toward that goal when a
broad coalition of companies, government agencies, academics, and advocacy groups
launched a program to assure than software is free of 25 common errors that lead to the bulk
of security problems.

The key to making the program effective is that it goes well beyond recommending best
practices. Software buyers, particularly governments and large corporations are being urged to
demand that vendors certify that code they sell is free of these 25 errors, and there’s nothing
like potential legal liability to get a company’s attention. In addition, colleges are pledging to
train students in writing software and employers can use the guidelines to assess the skills of

Wedcome to MSDN Blogs Sign in | Join | Help

-
AN T Y

HOME EMAIL RSS 2.0 ATOM 1.0

Recent Posts SDL and the CWE/SANS Top 25

SDL Threat Modeling Tool 3.1.4
ships!
Early Days of the SDL, Part Four Bryan here. The security community has been buzzing since SANS and MITRE's

Early Days of the SDL, Part joint announcement earlier this month of their list of the Top 25 Most Dangerous

Three Programming Errors. Now, | don't want to get into a debate in this blog about

Early Days of the SDL, Part Two Whether this new list will become the new de facto standard for analyzing

Early Days of the SDL, Part One S€CUrity vulnerabilities (or indeed, whether it already has become the new
standard). Instead, I'd like to present an overview of how the Microsoft SDL maps

Tags ::the CWE/SANS list, just cie Tinie Education? Manual Process? Tools? Threat Model?
ay. 20 Improper Input Validation b ¥ Y ¥
common Criteria Crawl Walk . .| 116 improper Encoding or Escaping of Output ¥ ¥ ¥
Run Privacy SDL soLPro Michael and | have writtg 89 Failure to Preserve SQL Query Structure (aka SQL Injection) Y Y ¥
coverage of the Top 25 af 79 Failure to Preserve Web Page Structure (aka Cross-Site Scripting) Y ¥ ¥
Network Security Assurance believe that the results te| 78 Failure to Preserve 05 Command Structure (aka OS Command Injection) ¥ ¥
Security Blackhat SDL threat 25 were developed indep 319 Clear‘te?d Transmission of Sensitive Information Y Y
modeling root them out of the softy ::i ggi;séit‘edﬁfoqn”e“ Forgery (aka CSRF) ::: E
an?ly.s'.ls white paper and 209 Error Message Information Leak Y Y ¥
News guidance around every m 119 Failure to Constrain Memory Operations within the Bounds of a Memory Buffer Y Y Y
made many of the same § 642 External Control of Critical State Data Y ¥
for you to download and § 73 External Control of File Name or Path ¥ ¥ \
About Us 426 Untrusted Search Path X
Below is a summary of hq 94 Failure to Control Generation of Code (aka 'Code Injection’) ¥ ¥
Adam Shostack see the SDL covers every | 494 Download of Code Without Integrity Check ¥
Bryan Sullivan them [race conditions and 404 Improper Resource Shutdown or Release Y Y
David Ladd by multiple SDL requirem 665 Improperlnltlallzgtlon ¥ ¥
Jeremy Dallman tools to prevent or detact 682 Incorrect Calculation Y Y
285 Improper Access Control (Authorization) Y Y Y
Michael Howard - 327 Use of a Broken or Risky Cryptographic Algorithm ¥ ¥ ¥
Steve Lipner CWE Title 259 Hard-Coded Password Y Y Y Y
732 Insecure Permission Assignment for Critical Resource A Y
Blogroll 20 Improper Input V{ 330 Use of Insufficiently Random Values ¥ Y ¥
) o 116 Improper Encodir] 250 Execution with Unnecessary Privileges Y Y Y
BlueHat Security Briefings Escaping of Outpi 602 Client-Side Enforcement of Server-Side Security b ¥

ecuri

The Top 25 is not...

o A silver bullet
o A guarantee of software hea

th

o A perfect match for your unio
o As simple as it seems

ue needs

o The only thing to include in contract

language
o Completely found by tools

© 2009 MITRE

The Top 25 is...

e A mechanism for awareness
o A trigger of questions

o A place for mitigations

e A conversation starter

o A first step on the long road to software
assurance

© 2009 MITRE

Contact Us

top25@sans.org

cwe@mitre.org

cwe.mitre.org/top25

Public discussion list coming soon

<o’ httpr//www.owasp.org/index.php/Podcast_11

© 2009 MITRE

